Posts tagged ‘8.1.1’

Создание Flash Pool

С выходом Data ONTAP 8.1.1 (сейчас он, для самых нетерпеливых, находится в состоянии Release Candidate) появляется долгожданная фича под названием Flash Pool (он же, ранее, Hybrid Aggregate)

Итак, давайте посмотрим, как можно создать Flash Pool, то есть aggregate с дополнительными дисками SSD для кэширования данных.
Создадим для начала простой aggregate:

fas01> aggr create flashpool -B 64 -t raid_dp -T SATA -r 16 16

Имя aggregate: flashpool, формат: 64-bit, тип RAID: RAID-DP, тип дисков: SATA, размер RAID: 16

После успешного создания aggregate по имени ‘flashpool’ разрешим на нем собственно flashpool:

fas01> aggr options flashpool hybrid_enabled on

Несмотря на то, что коммерческое название фичи было изменено в релизе с ‘hybrid aggregate’ на ‘flash pool’, опция по прежнему называется ‘hybrid’. Аналогично с дедупликацией, которая когда-то называлась A-SIS (Advanced Single Instance Storage), и до сих пор так называется соответствующая опция в параметрах.

Теперь можно добавить к aggregate диски SSD в количестве 6 штук:

fas01> aggr add flashpool -T SSD 6

Из 6 штук два будет забрано под RAID parity (RAID-DP), а оставшиеся 4 - будут использованы как кэш. Обратите внимание, что сам aggregate не увеличится в емкости хранения! Добавленные SSD недоступны для непосредственного использования и записи на них данных, они будут использованы как кэш.

А теперь просто создадим на получившемся aggregate том (myvol) для хранения данных, емкостью 500GB:

fas01> vol create myvol flashpool 500g

Теперь получившийся том myvol, размером 500GB, можно использовать под данные, причем записываемые и считываемые данные будут автоматически использовать кэш на SSD.
В следующем посте мы посмотрим, какие средства есть для тонкой настройки режимов кэширования томов на Flash Pool.

Еще о тестировании Cluster-mode в SPC-1

Я не первый раз рубликую тут переводы постов инженера NetApp – Dimitris Krekoukias, ведущего автономный, и крайне интересный блог http://recoverymonkey.org/ (другие мои переводы его постов вы можете найти в рубрике “переводы”)

После долгого молчания, Dimitris опубликовал пост, вызванный публикацией отличных результатов кластера FAS6240 в Data ONTAP 8.1.1 Cluster-mode в бенчмарке блочного (FC) доступа – SPC-1, о котором я уже написал в понедельник. Однако вопросу почему он так хорош, и насколько именно он хорош – посвящен сегодняшний перевод.

NetApp опубликовал великолепные результаты тестирования Cluster-Mode в бенчмарке SPC-1

Опубликовано June 20, 2012

Мы тут в NetApp были довольно сильно заняты… заняты совершенствованием единственной в отрасли масштабируемой платформы хранения с универсальным доступом к данным, даже не считая множества разных других имеющихся в ней полезных штук.

Мы недавно выпустили ONTAP 8.1, которая, в Cluster-Mode, позволяет создать 24-узловой кластер (каждый узел которого может иметь до 8TB кэша) для задач NAS, и 4-узловой кластер для блочного доступа (FC и iSCSI).

А с выпуском ONTAP 8.1.1 (выпущенного 14 июня), мы увеличили лимит узлов для блочного доступа до 6, плюс добавили ряд дополнительных оптимизаций и возможностей. Между прочим, число узлов в кластере это пока только условный лимит официальной поддержки, это не жестко заданное ограничение.

После публикации нашего рекордного результата в бенчмарке NFS, люди спрашивали, как обстоит дело с производительностью блочного ввода-вывода в ONTAP Cluster-Mode, поэтому мы провели тестирование и опубликовали результаты бенчмарка SPC-1, используя часть той же системы, что уже была протестирована на SPEC sfs2008 NFS.

Для тех кто до сих пор думает, что NetApp не подходит для блочного доступа (это типичный FUD наших конкурентов): Это, на сегодня, лучший результат SPC-1 среди всех дисковых систем хранения, из расчета на уровень latency при достигнутом уровне IOPS (то есть возможно получить даже более высокие показатели IOPS на бОльших лимитах по latency, как я покажу далее в этом посте).

Вот ссылка на результаты и еще одна ссылка, на полную версию со всей доступной информацией.

В этом блоге я уже говорил о том, что представляет собой бенчмарк SPC-1 . Вкратце: Бенчмарк SPC-1 это общепринятый в индустрии, аудируемый, бенчмарк блочного доступа к системе хранения (по Fiber Channel) который проводит стресс-тестирование дисковой подсистемы большим объемом записей, перезаписей, локальных "хотспотов" и смешанной произвольно/последовательной, чтение-после-записи, запись-после-чтения нагрузкой. Около 60% рабочей нагрузки это операции записи. Размеры используемых в бенчмарке операций ввода-вывода различны, от маленьких до больших (таким образом IOPS в бенчмарке SPC-1 не идентичны и не могут быть сравнены напрямую с классическим тестом IOPS в full random блоками 4KB).

Если сторадж успешно работает на нагрузке SPC-1,, он, обычно, также крайне производительно работает на сложной, чувствительной к показателям latency, динамично изменяющейся нагрузке типа баз данных, в особенности OLTP. Полная спецификация для смертельно любопытных может быть найдена здесь.

Трюк с бенчмарками обычно состоит в интерпретации результатов. Сама по себе величина достигнутых IOPS, хотя и полезна, но не показывает всей картины, и того, как данный результат соотносится с реальной жзнью и реальными приложениями. Мы попытаемся помочь расшифровать результаты в этом посте.

Перед тем, как мы перейдем к анализу и сравнению результатов, несколько замечаний для неверующих:

  1. В тестах NetApp не используется диски "с коротких ходом" (short-stroking), так часто любимые многими вендорами, проводящими тестирование, при котором используется только внешняя, наиболее быстродействующая часть диска, где сочетается максимальная линейная скорость и малый разбег механики коромысла жесткого диска, на чем можно показать наилучшие результаты. Вместо этого мы используем настройку параметров системы , чтобы использовать всю поверхность дисков, и не зависеть от того, насколько заполнены данными диски. Смотрите полный отчет здесь, страница 61. Для любителей распространять FUD: это эффективно "старит" состояние WAFL, приближая его к реальному состоянию реально эксплуатируемой системы. Мы также не используем оптимизацию размещения блоков путем их реаллокации.
  2. Падения производительности в ходе продолжительного тестирования не наблюдалось.
  3. Средняя величина latency (“All ASUs” в результатах) была плоской и оставалась ниже уровня 5ms на протяжении нескольких итераций теста, включая sustainability test в течение 10 часов (страница 28 полного отчета).
  4. Не использовался дополнительный кэш, кроме того, который поставляется в базовой поставке FAS6240 (Контроллеры 6240 поставляются с Flash Cache емкостью 512GB, при максимальной возможной емкости данной модели 3TB на ноду (контроллер), то есть для работы с большими нагрузками есть еще значительный запас).
  5. Это не "звездолет", построенный исключительно для завовевания победы и установления рекорда в бенчмарке. Мы использовали сравнительно немного дисков, в сравнении с конфигурациями других вендоров, и это не самая быстрая наша модель контроллера (еще есть 6280).

Анализ

Когда мы смотрим на результаты бенчмарка, следует сфокусироваться на следующих моментах:

  1. Высокий уровень установившейся производительности в IOPS (нестабильность показателей показывает на наличие проблем).
  2. IOPS/диск (это показатель эффективности – 500 IOPS/drive это вдвое лучше и эффективнее, чем 250 IOPS/drive, что, как следствие, означает меньше необходимых дисков в системе, снижает ее стоимость, уменьшает физический занимаемые в датацентре объем, и так далее.)
  3. Стабильно низкая latency (пики показывают наличие проблем).
  4. IOPS связан и зависит от latency (Получили ли вы высокие показатели IOPS вместе с высокой latency на максимуме? Это практически используемо?)
  5. Какой тип RAID использовался (RAID6? RAID10? RAID6 обеспечивает значительно лучшую защиту данных и лучшие результаты эффективности использования дискового пространства, чем зеркалирование, что ведет к снижению стоимость даже более надежного хранилища данных).
  6. Какие диски использовались? Хотите ли вы покупать такие диски?
  7. Использовался ли autotiering? Если нет, то почему нет? Разве он не помог бы в такой сложной ситуации?
  8. Какое оборудование потребовалось, чтобы получить стабильную производительность (сколько дисков и контроллеров потребовалось для построения системы? Означает ли это более сложную и дорогую систему? Как это все будет управляться?)
  9. Цена (некоторые вендоры указывают цену уже с учетом дисконта, в то время как другие публикуют цену в list price, так что будьте тут внимательнее).
  10. Цена/IOPS (наиболее полезная метрика – но следует сравнивать цену list price с list price).

SPC-1 это бенчмарк НЕ для измерения максимума потока данных; для измерения чистого GB/s смотрите другие бенчмарки. Большинство систем не дает больше 4GB/s в этом бенчмарке, так как много операций в нем рандомные (и 4GB/s это довольно много для рандомного ввода-вывода).

Сравнение систем

В этой части мы сравним дисковые системы хранения. Предсказуемо "чистые SSD" (или RAM) системы хранения имеют, конечно, очень высокие показатели производительности, и могут подойти, если ваша задача - обеспечивать работу с небольшим объемом данных очень быстро.

Но мы сосредоточимся на задачах высоконадежных систем общего применения, которые обеспечивают одновременно и высокую производительность, и низкую latency, и большую емкость, за разумную цену, а также, одновременно, большое количество функциональных фич(снэпшоты, репликация, кэширование в flash (megacaching), thin provisioning, дедупликация, компрессия, многопротокольность, включая NAS, и так далее). Опа – оказывается никто из конкурентов не может сделать сразу все что умеет делать NetApp.

Ниже приведен список систем и ссылки на их полные отчеты тестирования SPC-1, где вы сможете найти всю необходимую информацию. Все эти системы имеют высокие результаты и относительно плоскую кривую latency.

Также есть несколько других дисковых систем хранения, со значительными результатами по IOPS, но если мы посмотрим на их результаты sustained latency (“Sustainability – Average Response Time (ms) Distribution Data” в любом из полных отчетов) мы увидим, что общие показатели latency чересчур высоки и наблюдается значительная неравномерность, в особенности в начальной фазе, с пиками до 30ms (что крайне много), поэтому мы не взяли их в расчет.

Вот краткий перечень систем и их параметров, отсортированных в соответствии с latency. Кроме этого показана и их стоимость в ценах list price (это можно найти в полном отчете о тестировании) плюс стоимость операции $/IOPS, посчитанная исходя из list price (многие вендоры приводят в отчетах цену с уже введенной скидкой, чтобы цена выглядела пониже):

 

image

…но ведь тут показано, что некоторые системы быстрее NetApp… Как так?

Это зависит от того, насколько важен для вас показатель latency и его низкая величина (и от того, принимаете ли вы в расчет используемый тип RAID). Для подавляющего большинства нагрузок типа баз данных, низкая latency операций ввода-вывода гораздо предпочтительнее высоких показателей latency.

Вот как это увидеть:

  1. Выберите один из приведенных выше линков на полные отчеты Допустим это будет 3Par, так как он показывает одновременно и высокие показатели производительности, и высокие значения latency.
  2. Найдем в отчете главу под названием "Response Time – Throughput Curve". Например это страница 13 в отчете по системе 3Par.
  3. Проследим, как latency резко растет при повышении загрузки системы.

Например посмотрим на кривую 3Par:

image

Заметьте то, как latency резко растет после некоей точки.

Теперь сравним с результатом NetApp (страница 13):

image

Отметьте, что результат NetApp не просто имеет хорошие показатели latency, но, что еще более важно, latency остается хорошей и растет исключительно медленно по мере увеличения нагрузки на систему.

Вот почему колонка“SPC-1 IOPS around 3ms” была добавлена в таблицу. Фактически это ответ на вопрос что бы было, если бы уровень latency был в тесте одинаков для всех протестированных систем?

Когда вы примете эту позицию, вы увидите, что система 3Par фактически медленнее, чем NetApp, если сравнить их на одинаково низком желаемом уровне latency.

Вы можете взять точные показатели latency из графика на странице 13, у NetApp таблица выглядит так (озаглавлено "Response Time – Throughput Data"):

image

Действительно, при сравнении результатов мы видим, что только IBM SVC (с кучей стораджей V7000 за ним) оказывается быстрее NetApp при столь же хороших показателях latency. Что плавно подводит нас к следующей главе…

Сколько железа обеспечивает такую производительность?

Почти любая инженерная задача может быть решена, если дать приложению достаточное количество необходимого оборудования. Результат IBM это как раз хороший пример того, как можно получить хороший результат собрав вместе большую кучу дорогостоящего железа:

  • 8 SVC контроллеров (virtualization engines) плюс…
  • …16 отдельных систем V7000…
  • …каждая состоящая из еще 2 контроллеров SVC и 2 контроллеров RAID
  • 1920 дисков 146GB 15K RPM (не так-то просто такие купить нынче, не так ли?)
  • Итого 40 контроллеров SVC (8 больших и 32 поменьше), 32 RAID-контроллера, и все это битком наполнено дисками.

Даже отставив в сторону вопрос того, как это все управляется, сколько это потребляет электричества и как размещается, понятно, что это довольно большая система. Я даже не пытался посчитать, сколько тут процессоров и ядер работают параллельно, уверен, их много.

Сравним эту кухню с вариантом конфигурации NetApp:

  • 6 контроллеров в одном кластере
  • 432 диска 450GB 15K RPM (самый распространенный и массовый наш диск по состоянию на июнь 2012).

Вопросы (с удовольствие увижу ответы на них от других вендоров):

  1. Что произойдет при использовании RAID6 у других вендоров? NetApp всегда тестирует системы с использованием своей версии RAID6 (RAID-DP). RAID6 значительно надежнее, чем зеркалирование, особенно в больших пулах (не говоря уже о более эффективном использовании пространства дисков). Большинство клиентов не хотят покупать большую систему в конфигурации только-RAID10… (пользователи - задавайте вопросы вашим вендорам. Тут нет никакого волшебства – ручаюсь, у них есть внутренние результаты для RAID6, попросите показать их вам).
  2. Autotiering это одна из самых раскрученных сегодня фич, с признаками того, что это достижение, превосходящее изобретение пенициллина, или даже колеса, а может даже и огня… Однако никто из дисковых массивов не рассматривает использование SSD для autotiering (IBM опубликовала однажды результат – не впечатляет, делайте выводы). Это при том, что бенчмарк, по своей спецификации активно создающий "горячие точки" (hotspots) нагрузки, должен бы быть здесь идеальным кандидатом для демонстрации эффективности…
  3. Почему EMC и Dell не желают публиковать результаты SPC-1? (Они оба, кстати, члены SPC, Storage Performance Council). Только два этих вендора, из крупных игроков на рынке, кто еще не опубликовали свои результаты. EMC ранее говорила, что SPC-1 это нереалистичный тест – ну, типа только ваше приложение с вашими данными на вашем сторадже может показать по-настоящему реальные результаты. Это так, однако SPC-1 это общепринятый индустрией стандартный бенчмарк для блочного доступа произвольного характера, и отличная "лакмусовая бумажка".
  4. Для системы, которая регулярно позиционируется для нагрузки Tier-1, IBM XIV, результаты бенчмарков, увы, отсутствуют также, даже для самой новой ее Gen3. Неужели IBM стесняется показать свои результаты SPC-1 для этой системы?
  5. Наконец – некоторые наши конкуренты продолжают утверждать, что NetApp, дескать, это "не настоящий SAN", что это, якобы "эмуляция SAN", и так далее. Что бы это все ни значило на самом деле – может быть подход NetApp, с такой "эмуляцией" оказывается, по факту, лучше?… Максимальная write latency в этом тесте составила 1.91ms для в основном записываемой нагрузки!

Итоговые мысли

В накануне опубликованном результате бенчмарка SPC-1, NetApp показала вновь, что Data ONTAP в Cluster-Mode это высокопроизводительная и масштабируемая система, одинаково подходящая как для SAN, так и для NAS задач. Суммируя все вышесказанное, можно сказать, что ONTAP Cluster-Mode:

  • Позволяет строить высокопроизводительные и динамически-масштабируемые кластеры хранения для FC, iSCSI, NFS и CIFS.
  • Демонстрирует низкую latency при высокой производительности.
  • Предлагает исключительно хорошее соотношение price/performance.
  • Позволяет доступ к данным одной ноды с любых других нод.
  • Перемещает данные между нодами, не прерывая работы с ними (включая CIFS, что ранее не было практически невозможно).
  • Поддерживает традиционные для NetApp возможности (оптимизацию процессов записи, взаимодействие с приложениями, снэпшоты, дедупликацию, компрессию, репликацию, thin provisioning, и кэширование во flash (megacaching).
  • Может работать на в точности тех же самых контроллерах FAS, что и в 7-mode, что защищает инвестиции.
  • Может виртуализовывать системы хранения, расположенные за ними.

Источник <http://recoverymonkey.org/2012/06/20/netapp-posts-great-cluster-mode-spc-1-result/>

Infinite Volume

Несмотря на то, что современные модные тенденции в софтостроении требуют выпускать новую мажорную версию при списке whatsnew: [*] исправлена грамматическая ошибка в панели About программы, NetApp все же следует классической модели именования  изменения версий. Однако иногда эта консервативность, на мой взгляд, бывает даже чрезмерна, так, напрмер, между Data ONTAP 8.1 и 8.1.1 в функцональность были добавлены весьма существенные, важные и интересные штуки (про одну из них – Flash Pool мы уже говорили ранее). Так, например, это фича, под названием Infinite Volume. Не то чтобы это была сверхнужная для каждого возможность, но тема любопытная, и, возможно, читателям будет интересно узнать, чем же там занимаются, за закрытыми дверями отдела разработки Data ONTAP, и в какую сторону идет направление работ.

Infinite Volume – это новая возможность для кластерных систем (под Cluster-mode) NetApp, позволяющая строить очень большие тома, с доступом по NFS v3. На сегодня лимит для Infinite Volume это 20PB и 2 миллиарда файлов в одном “томе”, то есть в одном маунте (экспорте) NFS, на 10-нодовом кластере. Разумеется эти файлы распределены по множеству томов и aggregates нод кластера, но монтируются они при этом через одну точку монтирования. Таким образом, например, 200 томов по 100TB каждый, по 20 томов на каждой из 10 нод кластерной системы, будут смонтированы на сервера по единственному пути cluster:/vol/infivolume/, а не в виде 200 экспортов, на каждом из множества frontend-серверов системы, как это бы пришлось делать в “классическом” варианте.

Infinite Volume, как вы понимаете, это достаточно специализированное решение, ориентрованное на задачи секвентального чтения больших файлов, и сравнительно редкой их записи. Мне видится, что это задача похожа на что-то типа Youtube, или сходного функционала онлайнового файлового или видеохранилища, что-то такое, где себя сейчас хорошо чувствует EMC Isilon. Infinite Volume занимает нишу, в настоящий момент незакрытого в продуктах компании участка, разделяющего задачи систем E-series (бывших LSI/Engenio) и решений на его базе, подобных NetApp FMV solution и прочих StorNext с одной стороны, и “классических” FAS в Cluster-mode с другой.

Hybrid Aggregate теперь Flash Pool!

Ну, так как до выхода 8.1.1 уже совсем немного времени, давайте я уже расскажу вам, что же такое Flash Pool, который появится у NetApp начиная с этой версии.

Я ранее уже несколько раз упоминал о новой идее NetApp – включении нескольких SSD непосредственно в дисковый aggregate системы хранения, и использования их под кэш “уровня aggregate”, в том числе и для записи. Эта конструкция дополняет возможности Flash Cache, может работать как с ним вместе, так и сама по себе, причем, отметьте, также и для систем, на которых Flash Cache, по тем или иным причинам, использовать уже нельзя, например FAS3210, 3140, и даже 2240.

К моменту выпуска, реализация Hybrid Aggregate в системах NetApp получила собственное, коммерческое имя-торговую марку Flash Pool, и далее я буду пользоваться именно им. Вы же знайте, что Flash Pool это название реализации NetApp Hybrid Aggregate в Data ONTAP 8.1.1 и новее.

К сожалению, вокруг Hybrid Aggregate/Flash Pool уже начало образовываться облако недопониманий и мифов, а моя задача в очередной раз внести ясность в тему.

Итак, начнем.

Прежде всего, я бы хотел сказать, что, вопреки домыслам, Flash Pool это НЕ tiering, в классическом его понимании (например в том виде, в каком он представлен в EMC FAST), это кэш. Этот момент понятен? НЕ disk tiering, not, nicht, nie. :) Это КЭШ.

Появление Flash Pool также не означает отказа от Flash Cache. Это независимое, но дополняющее решение. Он может работать с Flash Cache, может работать сам по себе. В случае работы с Flash Cache, кэширование не дублируется. Тома, работающие с Flash Pool (находящиеся в аггрегейте с SSD) не кэшируются в Flash Cache. Помните, что Flash Cache может работать со всеми aggregates и volumes системы в целом, а кэширование Flash Pool распространяется только на тома одного aggregate. Если у вас несколько aggregates, вам понадобится добавлять SSD для создания Flash Pool в каждый aggregate, который вы хотите кэшировать в Flash.

В гибридный aggregate, то есть Flash Pool вы можете преобразовать любой 64-bit aggregate, добавив в него несколько SSD NetApp, объединенных в RAID-группу, и указав для aggregate соответстующую опцию, также его можно создать “с нуля” обычным способом, как любой aggregate. Но в создании Flash Pool есть несколько тонких моментов, именно на них я хочу остановится подробнее.

Так как Flash Pool это кэш, то есть SSD, как таковые, не доступны для непосредственного хранения на них каких-то конкретных данных, а лишь кэшируют поступаюшие на и считываемые с томов aggregate данные, добавление в aggregate SSD не увеличивает его емкость. Есть и “побочный эффект” – если вы имеете aggregate, достигший максимального возможного для данного типа контроллеров размера, например 50TB для FAS3210, то вы все равно можете добавить в этот 50TB-аггрегейт диски SSD для Flash Pool.

Тип RAID-группы для дисков, добавляемых в aggregate должен быть одинаков для всего aggregate. Если вы используете RAID-DP, то добавляемые SSD тоже должны быть в RAID-DP. Нельзя в aggregate из HDD в RAID-DP добавить SSD в RAID-4, например.

Обратите внимание, что возможность добавления в aggregate дисков SSD НЕ означает возможности добавления в aggregate дисков HDD другого типа. Flash Pool може быть (по вашему выбору) из SAS/FC и SSD, или из SATA и SSD, но НЕ из SAS и SATA.

После добавления SSD в aggregate вы, как и в случае обычных дисков, добавленных в aggregate, не можете “вынуть” их оттуда (например чтобы использовать их позже в другом, более нуждающемся aggregate) не уничтожив aggregate.

Наверняка у многих уже вертится на языке вопрос: “Как же нам воспользоваться Flash Pool, если NetApp продает SSD только в составе полки на 24 диска?” Отвечаем: С появлением Flash Pool SSD NetApp будут продаваться паками по 4 штуки, что дает вам во Flash Pool 142GB кэша из 4 SSD. Диски имеют размер 100GB [84574 MiB], и когда они включаются в aggregate, построенный на RAID-DP, вы получите из 4 дисков два диска parity и два – data. Конечно, вы можее включить в Flash Pool и больше SSD.

Однако помните, что SSD имеют интерфейс SATA. Это значит, что вы НЕ МОЖЕТЕ добавить SSD непосредственно в полку с дисками SAS. Но можете – в полку с дисками SATA. Смешивать физические интерфейсы дисков в составе одной полки нельзя. Таким образом, если у вас система с “только-SAS/FC”, вам понадобится для установки SSD, даже всего 4 штук, например, дополнительная полка “только-SATA”. Не забывайте об этой сложности.

Вопрос, который я уже тоже слышу :) “Вы говорите – SSD работает на запись? А как же с исчерпанием ресурса на перезапись для SSD?”

Ну, это тема. Да, безусловно, с этой точки зрения Flash Cache был принципиально более надежен, так как работал только на чтение, а записи (заполнение кэша) в него делались сравнительно (по меркам компьютера) редко, и большими “порциями”, которые flash memory как раз обрабатывает довольно хорошо, это не random write мелкими блоками. Однако практика использования SSD enterprise-class показывает, что проблема пресловутого “исчерпания ресурсов SSD при записи” в значительной мере надумана, преувеличена, и присуща, в основном, “бытовым” SSD. Тем не менее, эта проблема возможна, так как Flash Pool действительно пишется, работая на запись (хотя, вы не забыли, записи в WAFL не рандомны, а секвентальны). Для защиты данных в случае выхода SSD из строя вы как раз и используете объединение SSD в RAID, а сами SSD, как устройства, покрыты общей трехлетней warranty на систему.

На самом деле в отношении записи вы можете столкнуться с другой, более важной, чем мифическое “исчерпание ресурса на запись” неприятностью. Дело в том, что устройство flash таково (это так для любого flash-устройства”), что его производительность на запись падает, по мере активной записи (и пере-записи) данных на нем. Производительность SSD на запись максимальна, когда он полностью пуст и только пришел с завода.  После того, как данные на SSD записываются, перезаписываются, и он постепенно заполняется данными, его производительность постепенно снижается, и стабилизируется на более низком, чем начальный, уровне, после того, как все его ячейки будут перезаписаны. С этим эффектом знакомы все владельцы SSD. Так что не экстраполируйте результаты первого испытания пустых SSD на всю его работу.

Отвечая на третий вопрос ;) : Да, TRIM для SSD поддерживается Data ONTAP на уровне системы.

Напомню, Flash Pool, новое название Hybrid Aggregate, появится в Data ONTAP 8.1.1, которая ожидается к выпуску в ближайшем месяце.

20/0.155

Данный блог не спонсируется, не аффилирован, и не санкционирован компанией NetApp, Inc. Излагаемая в этом блоге точка зрения выражает мнение исключительно его автора и может не совпадать с позицией NetApp, Inc.

This content is not endorsed, sponsored or affiliated with NetApp, Inc. The views expressed in this blog are solely those of the author and do not represent the views of NetApp, Inc.